Appendix A1

Investigation overview:

Draft terms of reference
BERRY BYPASS SOUTH ROUTE SUGGESTION
REVIEW OF TECHNICAL INVESTIGATION GROUP FINDINGS
DRAFT TERMS OF REFERENCE
MARCH 2012

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>2. BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>3. OBJECTIVES</td>
<td>2</td>
</tr>
<tr>
<td>4. INPUTS</td>
<td>2</td>
</tr>
<tr>
<td>5. SCOPE</td>
<td>2</td>
</tr>
<tr>
<td>6. OUTPUT</td>
<td>3</td>
</tr>
<tr>
<td>7. GOVERNANCE & RESPONSIBILITIES</td>
<td>3</td>
</tr>
<tr>
<td>8. REPORTING</td>
<td>3</td>
</tr>
<tr>
<td>9. ASSUMPTIONS</td>
<td>3</td>
</tr>
<tr>
<td>10. KEY MILESTONES</td>
<td>4</td>
</tr>
</tbody>
</table>
This draft Terms of Reference provides the scope and intent for an independent examination of the Berry bypass southern route review process.

1. BACKGROUND

On 7 February 2012 the NSW Government through the Member for Kiama announced RMS would review costings related to a possible southern bypass of Berry. (Refer Attachment A – Media Release).

A potential bypass route south of Berry was long-listed for RMS consideration during the 2006/2007 Berry bypass route selection process. No southern route progressed to the short-list of options announced in November 2007 and considered during a route selection value management process in May 2008.

The Berry bypass southern route review announced by the NSW Government in February 2012 is a result of concerns about the elimination of the southern route.

A technical investigation group was formed with a brief to:

- Develop an indicative route bypassing Berry to the south with sufficient information to produce a robust strategic estimate.
- Use its best endeavours to:
 - Optimise the southern route to minimise property impacts and land severance.
 - Engineer a cost effective southern route solution.
 - Apply any benefits found on the southern route to the northern route where applicable, and vice versa.
- Evaluate the feasibility of the southern bypass route by comparing it to the currently preferred northern bypass route within the context of the whole Foxground and Berry Bypass Princes Highway Upgrade.

2. OBJECTIVES

The principal objective of the independent review is to observe and record the nature of the process to ensure it has been thorough and even handed when evaluating the strategic route feasibility estimate for the southern bypass and the technical inputs required to produce it.

3. INPUTS

Resource materials available for this work includes any and all previous project documentation.

4. SCOPE

The independent examination of the review will achieve the above objective above by considering whether:

- the technical investigations have been conducted in an unbiased and even handed manner for both routes.
• The technical investigation group adequately questioned and challenged the scope of work and outputs.
• the scope of work and outputs are in line with community and RMS expectations.
• all reasonable measures been taken to ensure a like for like comparison of the two bypass routes.
• the best possible engineering solutions have been applied to both routes.
• applicable suggestions from the community and others have been included in developing the route designs and construction methods.
• the proposed constructability methods are realistic and reasonable.
• any innovations carry a risk premium.
• the appropriate risk factors and contingencies have been adopted, and are properly documented.
• the construction programme is realistic and production rates are in line with construction industry norms.
• the cost estimate is thorough and complete.

5. OUTPUT

The output is a high-level report on the technical investigation process and findings.

6. GOVERNANCE & RESPONSIBILITIES

The independent reviewers engagement will be in accordance with NSW Government procurement guidelines and RMS procedures.

The RMS authorised delegate on the contract is to be the RMS General Manager, Project Development.

The independent reviewers will report to the General Manager, Project Development.

The final Terms of Reference will be published on the RMS website.

7. REPORTING

The final report into the technical investigation group process will be published on the RMS website.

This report will not be subject to RMS approval and the independent consultant will decide on the content and format of the report.

The independent consultant’s draft final report and findings will be presented to the General Manager, Project Development without reference to the RMS project team or the technical investigation group.

8. ASSUMPTIONS

• That the technical investigation group is gathering data to assist in performing a strategic route feasibility cost gateway.
• That the deliberations of the RMS technical investigation group and its final report will also be published by RMS.
• That the review process is considering only cost related factors and not environmental factors.
• That RMS will continue to consult with the Berry community to refine the preferred northern route so as not to prejudice its progress.
• That the RMS Executive will provide advice to the NSW Government based on the outcome of the review and the independent examination of that review.

9. KEY MILESTONES

The independent reviewers will report to the RMS General Manager, Project Development:

• Four weeks prior to the finalisation of the technical investigation group considerations.
• Upon submission of the technical investigation group draft report to RMS.
• Two weeks after the submission of the technical investigation group draft report to RMS.

As the independent review team otherwise see fit.
Appendix A2

Investigation overview:

Qualifications of the technical investigation group
TIG Member Profiles

Adam Berry

RMS, Project Development Manager

Role in the Technical Investigation Group: RMS representative

Qualifications and Affiliations: Adam Berry is a Project Development Manager in RMS Southern Region, with experience managing road infrastructure projects within local communities. He has also managed the RMS Road Safety and Traffic Management functions for Southern NSW.

Adam has extensive experience leading multi-disciplinary teams and has recently been:

- RMS Alliance Team Leader on the $26.3 million upgrade of the Kings Highway outside Queanbeyan in association with the Australian Department of Defence.
- RMS Project Manager, Hampden Bridge major restoration project.
- RMS Project Development Manager, Princes Highway realignment at Termeil Creek.

Adam has a Masters in Project Management and an undergraduate degree in Management and Communications, both through the University of Wollongong.

Henk Buys

AECOM, Technical Director – Ground Engineering

Role in the Technical Investigation Group: Geotechnical engineering

Qualifications & Affiliations: BSc (Civil Eng) University Of Cape Town 1977; Member, Institution of Engineers Australia; Committee Member, Australian Geomechanics Society; Member, Working party for slope issues, National Disaster Mitigation Program (2005-2007); Member, Advisory Board for Priority Research for Geotechnical and Materials Modelling, University of Newcastle

Henk has more than 25 years professional experience in a broad range of geotechnical engineering projects with a particular emphasis on rail and road infrastructure projects in Australia, South East Asia and South Africa. Prior to joining AECOM Henk has worked for RTA as Manager, Geotechnology. His work has included investigation, design and management on a range of geotechnical and multidisciplinary projects. His experience includes slope stability, retention systems, cut and cover structures and heavy civil engineering works. His recent work has included adapting remote sensing techniques, fibre optics and other leading technologies for geotechnical purposes and assessment of surface impacts of longwall mining on major infrastructure corridors.
TIG Member Profiles

Gillian Goldsmith
Evans & Peck, Associate

Role in the Technical Investigation Group: Report preparation
Qualifications & Affiliations: Bachelor of Planning (Honours), University of New South Wales; Evans & Peck Leadership Training (2010); Committee Member, FutureNet; Associate Member, Planning Institute of Australia (MPIA)

Gillian has over 8 years’ experience working with a diverse range of private construction and infrastructure firms and government organisations, both in Australia and abroad. Gillian has demonstrated ability in program and project management, strategic urban planning and approval strategies, contract and commercial negotiation. Gillian has successfully managed stakeholder and communication implementation for a range of corporate and public sector projects, required to ensure the delivery of large infrastructure, change management or community engagement projects. Gillian has experience in providing senior executive business support and ensuring coordination of large transformational change projects. In 2010, Gillian was awarded NSW PIA Young Planner of the Year, for her work on the Housing NSW Nation Building Economic Stimulus Program.

Philip Jorgensen
Evans & Peck, Senior Associate

Role in the Technical Investigation Group: Cost estimator
Qualifications & Affiliations: Bachelor of Civil Engineering; Certificate of Technology (Civil Engineering); Associate, Australian Cost Engineering Society

Phil possesses an in-depth knowledge of the rail industry including the areas of earthworks, road works, concrete structures, track work and tunnelling. He has strong estimating and budget setting experience, delivering estimates/ bids of varying sizes from $0.1m to $8bn. In addition he holds a bachelor of civil engineering degree and has extensive hands on project management experience gained from 25 years involvement in the construction industry. Phil was involved in the preparation of the estimate for the proposed Brisbane Light Rail system in 1999, as well as the Very High Speed Train (VHST) between Sydney & Canberra bid use Siemens ICE tilting train technology in 1998. More recently, as a Senior Associate at Evans & Peck, Phil was responsible for preparing budgets for the Northern Freight Corridor Program, North West Rail Link, a number of Clearways and Stabling projects as well as various Road, Water supply and Renewable Energy projects.
TIG Member Profiles

David Kennewell

AECOM, Principal Engineer – Water Resources

Role in the Technical Investigation Group: Flood investigations

Qualifications & Affiliations: Masters of Environmental Engineering Science - Water Resources; Bachelor of Environmental Engineering (Water); Chartered Professional Engineer; NPER Environmental (General); Member Institute of Engineers Australia; Member Australian Water Association

David has 10 years’ experience both as an engineering client and consultant. In addition to technical excellence, he works to deliver product that adds value and reduces risk to client organisations. David’s strong background in water resources is built around the interface between high quality numerical modelling and practical civil engineering design and construction. His core skills are in hydrology and hydraulic design of both piped and open systems. He is experienced in project management, survey, geotechnical investigations, archaeology, environmental and planning assessments and all levels of government, enabling him to develop effective water resources solutions tailored to the context of specific projects. David has project managed and executed large design projects, including the Millfield Ellalong Sewerage Scheme with seven wastewater pumping stations and 35km of brownfield wastewater reticulation.

Annabel Killen

Evans & Peck, Consultant

Role in the Technical Investigation Group: Coordination of documentation, report preparation

Qualifications & Affiliations: BE (Civil) (Hons I), BCom (Finance), University of Sydney

Annabel has experience in providing commercial and contractual advice and project management services on major public infrastructure projects. She has worked on major projects including the Pacific Highway Upgrade and the Airport Link project (Queensland).
TIG Member Profiles

Michael Moore

Evans & Peck, Principal

Role in the Technical Investigation Group: Advising on construction methodology, earthworks

Qualifications & Affiliations: Bachelor of Engineering (Civil), University of NSW

Michael has more than 25 years’ experience in civil construction, delivery & procurement of major tunnel, road, rail, bridge & airport projects. His capabilities include project management, design management, and technical management on various BOOT, design & construct, construct only, and alliance contracts. Michael has successfully led project teams in planning, developing and implementing construction solutions to resolve complex technical challenges for major projects, including M5 East viaducts through sensitive wetlands, a bus crossover between Western Distributor viaducts, and modular assembly of the ventilation stack for Sydney’s Cross City Tunnel. With Evans & Peck, Michael has provided construction management and constructability advisory services for road and rail transport infrastructure projects through the development, delivery and operational phases to both government and the private sector.

Ken O’Neill

Aurecon, Associate – Transport Services

Role in the Technical Investigation Group: Structures design

Qualifications & Affiliations: Degree in Structural Engineering, BSc(Eng), DIT Bolton Street, Dublin; CEng NPER MIEAust

Ken is a Senior Bridge Engineer with twelve years’ experience in the detailed design, documentation and construction of bridge and other infrastructure projects covering a wide range of structures from post-tensioned, concrete bridges to major modifications of existing bridges. He has worked on some of Sydney’s most iconic bridges including Sydney Harbour Bridge Infrastructure Upgrade and the ANZAC Bridge Maintenance Project.
TIG Member Profiles

Ben Noble

AECOM, Principal Engineer – Flood and Drainage

Role in the Technical Investigation Group: Flood investigations

Qualifications & Affiliations: Bachelor of Engineering (Civil) (Hons I), University of Technology Sydney; Member of Institute of Engineers, Australia

Ben has had over 13 years experience in many facets of civil and water engineering, with a particular emphasis in flood and stormwater management. His experience includes hydrologic and hydraulic investigations, flood and stormwater management, detailed design of drainage and flood mitigation works and water quality measures. Ben has been the technical lead for numerous flood and floodplain management studies as well as urban drainage strategy investigations requiring detailed hydrologic and hydraulic modelling incorporating 1D and 2D techniques. To complement his technical investigation skills, Ben has also obtained practical experience in the detailed design of flood control/drainage structures including levees, culverts, drainage systems for major infrastructure projects, channels and retarding basins. Ben’s experience covers all key stages of the project delivery process from investigations and feasibility assessments, to concept and detailed design through to construction. Ben has been involved in a range of projects including the North West Rail Link, South West Rail Link, Pacific Highway Sapphire to Woolgoolga, Hume Highway Tarcutta Bypass and the Hunter Expressway Branxton to Kurri Kurri.

John Poposki

RMS, Lead designer (road)

Role in the Technical Investigation Group: RMS representative

Qualifications and affiliations: Land and engineering survey drafting certificate. Proficient in Mx Cadd, Microstation

John is a road designer with the RMS. He commenced work with the RTA (now RMS) in 1989 as an Engineering surveyor. He transferred into Road design as a designer from 1990 and is currently based in Wollongong.

He has worked on major projects such as Yellow pinch to Millingandi, Merimbula Northern Distributor Wollongong Concept development and was principal designer for Conjola Mtn Realignment.
TIG Member Profiles

Ron de Rooy

RMS, Senior Project Manager

Role in the Technical Investigation Group: RMS representative

Qualifications and Affiliations: Bachelor of Engineering (Civil) 2nd Class Honours, Division 1 (1977) University of Wollongong. Member of the Institution of Engineers. Chartered Professional Engineer.

Ron has more than 30 yrs experience in the construction, maintenance and planning of highways and freeways. He is experienced in major earthworks and highway pavement design and construction and in the delivery of road construction projects by direct labour and by contract. Ron was involved in the detailed design and delivery of major freeway projects on the Hume Highway for the Berrima and Mittagong bypasses and led project teams in detailed design and construction of major projects on the Princes Highway and Picton Road. Ron has worked on the development of project and contract management systems for RMS and has worked as Quality Champion for the RMS Southern Region. Ron is experienced in working with local government through the administration of road construction and maintenance contracts. Ron has led the project team in the route selection process for the Princes Highway Gerringong to Bomaderry upgrade and completed the planning for the Gerringong Upgrade.

Glen Smith

AECOM, Principal Technical Officer – Roads/highways

Role in the Technical Investigation Group: Route design

Qualifications & Affiliations: Associate Diploma in Civil Engineering; Institute of Engineers Australia – OMIEAust; Diploma of Project Management (Deakinprime / Engineering Education Australia Australia); Registered Road Safety Auditor Institute of Public Work Engineering Australia

In his career, Glen has taken on supervisory roles, project management, design and design leadership for a variety of infrastructure projects. He has a strong technical background with 15 years experience in the design of road and civil projects for government and private clients. Glen has worked on a wide range of civil infrastructure projects for the transportation, urban development, energy, industrial and defence market groups. Glen has substantial experience in design, engineering investigations, project management, client liaison, utility service relocation design and co-ordination, project documentation including the preparation of design drawings, reports, specifications and schedules of quantities. Design experience includes projects undertaken in feasibility, concept and detail design phases. Specific design areas include roads (urban & rural), highways, busways, signalised and roundabout intersections, carparks, bulk earthworks, airports, traffic calming, streetscape upgrades and associated infrastructure design.
TIG Member Profiles

Peter Stewart

Peter Stewart Consulting Pty Ltd, Director

Role in the Technical Investigation Group: Construction methodology, earthworks

Qualifications & Affiliations: Bachelor of Science (Civil Engineering), University of Strathclyde, Glasgow; Fellow, Institution of Engineers Australia; Member, Institution of Civil Engineers, London

Peter has 40 years’ experience in the civil engineering construction industry in the UK, South Africa, Hong Kong and Australia. Peter Stewart Consulting provides professional services to the civil construction industry including construction methods, risk analysis, value engineering, option selection and alliance contracting facilitation.

Peter was honoured with the Australian Civil Engineer of the Year Award 2005 by the Board of the College of Civil Engineers of Engineers Australia for the excellence of his contribution to civil engineering across Australia.

Jon Williamson

AECOM, Principal Environmental Scientist

Role in the Technical Investigation Group: Project manager, AECOM design team

Qualifications & Affiliations: Bachelor of Marine Science (Hons); Masters of Environmental Science; Environment Institute of Australia and New Zealand

Jon has over eleven years’ experience in environmental management, compliance auditing, community and stakeholder consultation and project management across a diverse range of large and small scale linear and non-linear infrastructure development projects. He is experienced at all levels of project development from the provision of in-house environmental compliance advice and assistance to design teams and construction contractors, the preparation of environmental impact assessment and management documents; to the management of large multidisciplinary project teams. Jon has contributed to a range of projects including: Port of Melbourne Channel Deepening, Lawrence Hargrave Drive upgrade, Westlink M7, White Bay Wharf No 1 Reconstruction and the Pacific Highway upgrade.
TIG Member Profiles

Steve Zhivanovich

Roads and Maritime Services, Project Director

Role in the Technical Investigation Group: RMS representative

Qualifications & Affiliations: BSc Civil Engineering; Corporate Member Australian Institute of Building; Corporate Member of the Chartered Institute of Building (UK)

Steve is an all-round civil and building engineering professional with over 30 years’ experience in both Australian and UK construction industries. Experienced in heavy civil engineering; road and bridge construction; tunnelling; industrial, commercial and residential building works, Steve is a practical and systematic project manager, with a natural disposition towards collaborative alliancing and partnering delivery mechanisms. Steve actively seeks to build and maintain positive relationships and work culture. Recent projects include ANZAC Bridge Upgrade, Sydney Harbour Bridge Upgrade, Windsor Flood Evacuation Route and the M7 Westlink Motorway.
Appendix A3

Investigation overview:

Qualifications of the independent reviewers
Internal Independent Reviewer Profiles

Basil Pazpinis

RMS, Estimating Manager, Project Management Office, Infrastructure Contracts

Review responsibilities: Cost estimation

Qualifications & Affiliations: BE(Civil); MEngSc; BCom; RPEQ; MIEngAust; CPEng

Basil is an Estimating Manager where his role requires him to review estimates, provide cost advice, prepare estimates, report on estimating performance, report on cost trends, collect cost data. He is also custodian of the RMS Estimating Manual and the cost database.

Basil has had extensive experience in civil engineering, hydraulic engineering, structural engineering, contract management, project management, tender estimating, contract negotiating and contract programming. He has also provided expert advice on civil and structural aspects of projects, including costs of power plants in Australia and overseas. Basil has been involved in many road projects on the Princes Highway, Pacific Highway, Hume Highway, as well as other main roads in Sydney and the regions.

Alan Thomas

RMS, Project Management Office, Manager

Review responsibilities: Investigation process

Qualifications & Affiliations: BE(Civil); PEng; Grad.Dip.Bus

Alan has over 35 years experience in civil engineering projects. Alan has spent the last ten years with RMS as the Project Services Manager which involves overseeing the detail design and delivery of major projects. His current role also involves the management of the Infrastructure Project Management Office which supports Project and Contract Managers state-wide in PM systems, constructability issues and concurrence of project estimates. Alan has contributed to a range of projects including the duplication of main roads servicing the north west and the south west growth areas of Sydney; widening the F5 Freeway; and the NorthWest and Liverpool to Parramatta Bus Transitways.
External Independent Reviewer Profiles

Scott Button

Lyall + Associates, Principal

Review responsibilities: Flooding investigations

Scott Button has 20 years experience in the field of water resources engineering, with extensive experience in hydraulic modelling of urban and rural floodplains, floodplain management, drainage investigation and design. Recent projects involved extensive use of the RORB and RAFTS catchment modelling software, along with steady state and dynamic flow modelling of rivers and floodplains using the TUFLOW, RMA2, HEC-RAS (steady state and unsteady flow versions), MIKE 11 and FPLAIN modelling systems.

Recent projects undertaken on behalf of RMS include peer reviews of the water engineering components of major highway upgrade designs, including the M7 Motorway, Great Western Highway (Lawson, Bullaburra and Wentworth Falls sections), Pacific Highway (Sapphire to Woolgoolga section), Camden Valley Way (Cowpasture Road to Cobbitty Road section), Princes Highway (Gerringong to Bomaderry Tender Assessment) and the Hunter Expressway (Black Creek crossing).

Derrick Hitchins

SMEC, National Sector Leader – Traffic and Transport Planning – Transport

Review responsibilities: Investigation process, engineering design

Qualifications & Affiliations: Master of Business Administration, MBA; Bachelor of Science (Civil Eng), BSc (Eng) Civil; Diploma of Project Management

Derrick has over 26 years engineering experience in the civil and transportation sectors in Australia, New Zealand, South Africa and the United Kingdom. Derrick has a high level of specialist expertise in traffic engineering, transport modeling, transport strategy and policy development, and integrated transport planning. He has managed a range of significant civil engineering projects, strategic planning studies and public transport initiatives involving multi-disciplinary teams and government stakeholders. Over the past decade, Derrick has been part of the consultant teams delivering many of Australia’s most complex transport infrastructure projects. These have been mainly in Victoria, Queensland and South Australia. Specific projects of note requiring his skills include: Eastlink Motorway, Brisbane Airport Link, Ipswich Motorway, Pacific Motorway Upgrade, M1 West Gate Freeway Widening, South Road Superway in Adelaide and the Dandenong Urban Revitalisation Project. In his current role with SMEC, Derrick is responsible for the investigation, design, delivery of the larger planning studies being undertaken by the company.
External Independent Reviewer Profiles

Brian Lyall

Lyall + Associates, Principal

Review responsibilities: Flooding investigations

Brian Lyall has over 40 years experience with public authorities and consulting engineers in the water resources field. He has specialist expertise in the mathematical modelling of catchment hydrology and river hydraulics for urban and rural flooding projects, including floodplain management and highway drainage works. Projects undertaken include the resolution of a wide range of hydrologic and steady state and unsteady flow hydraulic modelling problems using one and two-dimensional models for the management of flood liable areas.

He was project manager for hydraulic investigations undertaken over the past ten years for assessing the impacts of major infrastructure projects on floodplains in the Sydney area (including M7 Western Sydney Orbital Road, M5 East extension and Parramatta-Liverpool Bus Transitway).

Chris Masters

SMEC, NSW Manager Environment and Sustainability

Review responsibilities: Investigation process, engineering design

Qualifications & Affiliations: Master of Business Administration (Technology Management), APESMA/Deakin University (2000); Master of Engineering Science (Water Engineering), University of NSW (1994); Master of Arts (Hons) (Physical Geography), University of Auckland (1984); Bachelor of Arts (Physical Geography), University of Auckland (1982); Environmental Auditor Training Course; Member, Australian Water Association

Chris has substantial experience in the environmental planning and management fields in both the private and public sectors with respect to the delivery and operation of major infrastructure projects. He regularly provides environmental and planning advice to clients, designers and contractors in relation to environmental risk identification, assessment and management, planning approval strategy development, and compliance auditing.
Dan Reeve

SMEC, General Manager Transport

Review responsibilities: Review director

Qualifications & Affiliations: Bachelor of Engineering; Master of Engineering Science; Chartered Professional Engineer; Institute of Engineers Australia - MIEAust

Dan Reeve is General Manager for SMEC’s Australian Transport Group and reports directly to the Managing Director Australia. He has more than 30 years experience in civil engineering design and construction with direct and extensive expertise in the delivery of large design and construct (‘D&C’) transport infrastructure projects.

Dan has significant experienced in the management of civil engineering and transport projects in both on-site and senior off-site management roles. In recent years Dan has had experience in the leadership of a number of significant Highway Design Projects. He is currently on the Alliance Leadership Teams for the Ballina Bypass Project and Banora Point Upgrade for the Pacific Highway. He was on the ALT’s for the Northern Hume and Tarcutta Hume Alliances plus Erskine Park Link Road Design Alliance. Previously he has been the SMEC Design Project Director on the Pacific Highway Bulahdelah Bypass and Bonville Upgrade projects.
Appendix A4

Investigation overview:

Issues, actions and outcomes register
The information in this register is subject to ongoing change and improvement as a result of the work being done by the southern route technical investigation group. This revision (29 May 2012) contains important updates. Updates to this information are highlighted in blue text.

The register provides a plain English description of items that are being put to RMS to consider as part of the cost exercise for the southern suggestion. These are suggestions that the authors feel could affect the outcome of the costing exercise. It's best we work on these as we go, rather than at the end. Everyone wants this process to be robust. And we want to be transparent about receiving them.

If you have further cost suggestions, please email foxgroundandberrybypass@rms.nsw.gov.au
What we do is then consider whether they could affect costs in a large way, or only in a minor way. Large cost impacts are flagged priority issues.

Critical technical questions being raised
Update 29/05/2012

<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Northern route: issue of pedestrian connectivity</td>
<td>Access across the highway is currently limited to a single point at Kangaroo Valley Road interchange.</td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td>Is this sufficient from a socio impact viewpoint?</td>
<td>The Kangaroo Valley Road working group is examining this issue and there are likely to be significant improvements made to the interchange which will improve pedestrian connectivity. The North Street precinct working group was also given a commitment that RMS will explore pedestrian bridge concepts in relation to North Street.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Argued that it is not and costings should include additional pedestrian connection points.</td>
<td>There is potential for an underpass connecting the Huntingdale Park Estate with Mark Radium Park and Victoria Street.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMS has explored the feasibility of a pedestrian underpass between Huntingdale Park Estate and Mark Radium Park and Victoria Street. The underpass is not feasible as the extension of Queen St/Onload ramp is too low to provide adequate height for an underpass and raising the road would result in large batters impacting Mark Radium Park or a large retaining wall adjacent to the duck pond.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The area below the bridge will no longer have public access as Shoalhaven Council no longer requires access under the bridge to a small section of Council land.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resolution of the clearance at the western abutment for maintenance access (1.8 metres required) is a matter for detailed design. Possible solutions for maintenance access are: 1. Leave as is. 2. Raise the alignment of the western bridge approach to provide clearance. 3. Excavate under bridge to increase clearance. 4. Shorten bridge but add additional culverts. 5. Adjust the type and dimensions of the bridge at its western end. To be assessed in detail design 6. Combinations of 2 to 5 above</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Northern route: drainage structures – main viaduct</td>
<td>The length of the main northern viaduct at 600m is too short to avoid flooding impact. Advice from the flood modellers is needed. Felt that the flood flow velocities at the northern route are likely to be significant as they occur opposite the confluence of Bundewallah and Connollys Creek.</td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td>Priority issue</td>
<td>Under the northern preferred route there would be a localised increase in flood levels upstream of the western embankment. Flood behaviour in this area has been documented in the Environmental Assessment report, which shows that flood levels would be increased by up to 0.3m in the 1 in 100 year ARI flood. A consequence of lowering the viaduct height at Woodhill Mountain Road is the western approach is close to ground level over its length up to Bundewallah Creek, approximately 50m to 75m. The height clearance from ground level to the underside of the bridge is approximately 1.5m in this area. The design of the embankment/road/bridge must be reviewed in this location to provide adequate height clearance and flood flow capacity at the same taking account of the environmental impact on the Bundewallah Creek riparian zone.</td>
<td></td>
</tr>
<tr>
<td>Issue</td>
<td>Community view/suggestion put to RMS</td>
<td>Information and actions</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Maps of the flood modelling undertaken for the northern alignment have been generated and are available in the RMS presentation of Monday 19 March 2012. Further mapping of the flood consequences of the southern suggestion has been completed.</td>
<td>In addition under the current design, there is a minimum of 0.15m freeboard between the 100 year ARI flood level and the underside of the bridge structure. The vertical alignment of the bridge and flood level gradient is such that this minimum freeboard occurs over a relatively short section. The preferred minimum freeboard is 0.5m. Possible solutions for flood impacts are: 7. Adjust the vertical alignment to achieve the minimum freeboard. 8. Undertake further flood modelling to assess the implications of blockage to the area of the bridge where freeboard is less than 0.15m. The flood modelling under item 8 will be carried out as part of the environmental assessment. If the modelling shows an adjustment of the vertical alignment is required, this will be carried out as part of the detailed design process.</td>
<td>Completed</td>
</tr>
<tr>
<td>3.</td>
<td>Northern route: costing drainage structures required on a like for like basis. and The issue of a Berry flood evacuation route. Priority issue</td>
<td>Are several short bridge structures required between Schofields Lane and Croziers Road to avoid flooding? and A flood immune route would be provided as a consequence of the preferred option. The northern preferred route with ramps provide northbound out and southbound in flood free access through the Kangaroo Valley Road interchange. Whose responsibility to provide this – RMS or Council? The southern suggestion leaves Berry in its current form with no changes to the existing flood evacuation routes, currently provided by Queen Street through to Kangaroo Valley Road. If the southern route were to also have flood immune access, this would require an upgrade of the highway from town to the southern interchange with the highway? What would this cost and should it be included in the costings?</td>
<td>The Northern route provides access to Berry in a 1 in 100 flood event. To make a valid like for like comparison the Southern route must also provide the same level of service. Under existing conditions there are five waterway crossings between Victoria Street and Croziers Road, consisting of pipe or box culverts. Under both the northern and southern route options these existing culverts will be replaced with larger culverts or bridges to provide 1 in 100 year ARI flood immunity to the upgraded highway whilst minimising adverse flood impacts on adjacent development. The choice between a bridge or culvert crossing is based on the size and environmental significance of the waterway. The design approach adopted is consistent for both the northern and southern route options. The Technical Investigation Group has produced a preliminary design that identifies the road adjustments required to provide 1 in 100 year flood immune access to Berry with the southern option. Some culvert upgrades may be required, and the alignment may need to be raised slightly in limited sections. The designs have been adjusted accordingly, with the details shown in the cost estimate section of the report being produced.</td>
</tr>
<tr>
<td>3(a)</td>
<td>Northern route drainage structures Priority issue</td>
<td>In designing the capacity of the culverts allowance should be made for a lack of maintenance and reduced capacity due to silting up.</td>
<td>The design of the culverts is being undertaken in accordance with standard practice and guidelines, which takes into consideration measures to minimise or manage blockage and siltation.</td>
</tr>
<tr>
<td>4.</td>
<td>Southern route option: the establishment of the design RL Priority issue</td>
<td>Vertical alignment is nearing completion. RL of existing structures proposed at 7.5. Information The vertical alignment (elevation) along the southern route is being determined by the results becoming available through the technical investigations. Surveyed levels from along the route were compared to photogrammetric results at known points along the route. This comparison found that the photogrammetric measurements in the</td>
<td>Results from further flood modelling have been finalised and incorporated into design.</td>
</tr>
</tbody>
</table>

Completed
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>area are sufficiently accurate. The vertical alignment is being developed to provide appropriate clearance between the 1 in 100 year ARI flood level and the underside of bridge structures in accordance with the RTA Bridge Water Manual. The minimum elevation of the bridge deck with respect to flooding is determined by the 1 in 100 year flood level, plus an appropriate clearance (technically referred to as freeboard which is generally 0.3m to 0.5m), plus the thickness of the bridge and pavement. Flood behaviour south of Berry is influenced by a combination of flooding from the Shoalhaven River, as well as local flooding of Broughton Creek and its tributaries. There is detailed flood information available on flooding from these two separate mechanisms. The TIG is working through this information to determine how the combined influence of flooding from Shoalhaven River and Broughton Creek would affect the proposed road alignment in order to come up with the most appropriate flood level(s) applicable to the road alignment. Note the 100 year ARI flood level is not constant along the alignment. This level changes as a function of how far upstream the point of interest is. As such it is not appropriate to adopt a single value. Further flood modelling has been undertaken on the flooding behaviour to the south of Berry. This has involved adaptation of SMEC’s flood model to tie into the boundary conditions of the Cardno flood model used in the Berry area. The flood model is based on a finite element analysis with a grid sample size of 3 x 3 metres equating to several million data points over the study area. High powered computers are required to process the data for many hours and both AECOM has organised computer run time over-night and weekends to undertake the modelling. Results and constraints will be documented in detail and water engineering consultants, Lyall & Associates (the independent flood and drainage reviewer) will review the results of the modelling. This additional flood modelling has provided more refined information about the flood levels and will be used to adjust the design. The preliminary results indicate the following revised alignments at two critical points: 1. Hitchcocks Lane Creek (Ch16800): Prior information indicated a 100 year flood level of 5.1m, further modelling indicates a level of 5.0m 2. Southern abutment of bridge (Ch18600): Prior information indicated a 100 year flood level of 5.5m, further modelling indicates a level of 5.3m</td>
<td>Completed</td>
</tr>
<tr>
<td>4(a)</td>
<td>Vertical alignment for the southern suggestion.</td>
<td>Proposed revisions of the current design provided by a community member. It is believed the revisions will provide the most</td>
<td>Information</td>
</tr>
<tr>
<td>Issue</td>
<td>Community view/suggestion put to RMS</td>
<td>Information and actions</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Priority issue | economical balance between cut & fill and reduce costs. Note: A minimum height for bridge structures at 7.5m AHD to allow flood clearance to the soffit of the Super T’s, (assume 1.5m clearance) is currently proposed. The minimum height of the embankments should be on average 6.5m AHD on an equivalent basis, which provides for 0.5m freeboard. | addresses the following constraints / requirements:
- Crest curve heights driven by required clearances over the railway / road, structure thicknesses and allowance for road cross fall
- Sag curve heights driven by required flood immunity, structure thicknesses and allowance for road cross fall
- Requirement to comply with geometric standards required for a 100km/hr vertical alignment
- Minimising poor coordination of horizontal and vertical alignment characteristics where possible (for safety, drainage and aesthetics)
Optimisation of the cut fill balance has been a consideration throughout and work is ongoing to optimise this. The study area for the mass haul analysis was extended to include Toolijooa to achieve the most cost effective design given the constraints above.
A number of options for optimising the cut/fill earthworks balance have been identified and the impacts of these have been quantified. The group is currently assessing which of these options are to be incorporated into the design with consideration to their impacts on the environment, urban design and property acquisitions. In addition, the cost of the options is being assessed. | Completed |
| 5. Climate change assumptions for the project, and the effect of the railway on flooding. | Have there been different assumptions between Berry and Gerringong projects? | Information
The assessment of climate change impacts at Omega Flats on the Gerringong upgrade was carried out in accordance with the DECC Technical Guideline – Practical Considerations of Climate Change (2007). This approach is consistent with current floodplain management practice in NSW. Consequently, this approach is also being adopted for the north and south Berry options. In this way, a standardised approach is being adopted to assess the sensitivity of the different route alignments to potential variations in sea level rise and rainfall intensities as prescribed in the DECC guideline.
The assumptions made for the Gerringong upgrade and the Foxground and Berry bypass are the same regarding rainfall and climate change. The level of documentation is different. This is because the level of documentation in a Review of Environmental Factors (prepared for the Gerringong upgrade) is different to that required for an Environmental Impact Study (being prepared for the Foxground and Berry bypass).
For each project we have allowed for a 6% increase in rainfall intensity in accordance with the RMS design parameters specification document.
The other consideration is the expected sea level rise. The influence of sea level rise on flooding depends on the location being considered. See response to 5(a) for more detail on this in relation to the Gerringong upgrade and Omega Flats. | Further documentation of the application of climate change allowances has been prepared and will be included in the report following review by the independent reviewer. Completed |
What are the assumptions for the southern suggestion? Resident discussions with Shoalhaven City Council noted the assumed 100 year flooding level should be 5.05m. The proposal of a centreline of 6m to cover super elevation is suggested, with a maximum road gradient of 2.5%.

Information
Flood behaviour south of Berry is influenced by a combination of flooding from the Shoalhaven River, as well as local flooding of Broughton Creek and its tributaries. There is detailed flood information available on flooding from these two separate mechanisms. The TIG is working through this information to determine how the combined influence of flooding from Shoalhaven River and Broughton Creek would affect the proposed road alignment in order to come up with the most appropriate flood level(s) applicable to the road alignment.

As part of this assessment, consideration is also being made to the potential impacts due to climate change in accordance with DECC Floodplain Risk Management Guideline – Practical Considerations of Climate Change (2007).

The Cardno Flood Study has indicated that the rail embankment across Broughton Mill Creek overtops due to 3 creek openings through the embankment being under designed for the volumes & velocities of water passing through. The embankment acts as a weir resulting in backing-up of flood waters on the northern side until overtopping occurs. The top of the embankment at this point is at approx. R.L.6m, whereas the downstream side of the adjoining floodplain is about 3-4m. Suggested that easements under the railway be considered to improve floods topping the railway.

The southern suggestion is south of the railway line. The height setting for the embankments on the southern alignment are not affected by this overtopping affect.

The project is related to the highway upgrade. Improvement works to the railway line to better manage flooding is not within the scope of the highway upgrade works. Shoalhaven Council is currently undertaking a floodplain management study for the Berry township and the issue of flooding of the railway line should be addressed through this process.

It should be noted that consideration of flood impacts on the railway line is an important factor in the road design, to ensure that the current situation at the railway line is not made worse.

It is RailCorp’s responsibility to make necessary changes to the railway embankment to reduce the impacts of flooding.

At Omega Flats on the Gerringong upgrade the railway line is located east of the road alignment and forms a physical barrier to the flow of floodwaters. This causes an afflux between the flood level upstream (west) and downstream (east) of the railway line, with flood levels on the western side appreciably higher. This arrangement and its influence on flood behaviour means that variations in ocean levels are drowned out by the flood gradient that occurs across the railway line.

The assessment of climate change impacts at Omega Flats was carried out in accordance with the Floodplain Risk Management Guideline – Practical Considerations of Climate Change (DECC 2007). This approach is consistent with current floodplain management practice in NSW. The Guideline recommends a sensitivity analysis of potential sea level rises of between 0.18m to 0.91m.

RMS utilised a factor for increased rainfall intensity of up to 6% in the design of culverts and other structures for both alignments in accordance with risks identified in: “NSW Climate Impact Profile, Department of Environment, Climate Change and Water NSW, June 2010”.

Completed
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| 6. Town Creek diversion
Priority issue | What exactly is the management proposal for Town Creek and its costs?
Is RMS able to proceed with the diversion? | The current design of the Town Creek diversion comprises an asymmetrical open channel. The affected property owners prefer a ‘box culvert’ solution. RMS has met with affected property owners regarding potential design locations and issues for the diversion of Town Creek.
A strategic estimate to construct an asymmetrical open channel diversion of Town Creek with a five cell, 2.1m by 2.4m box culvert giving vehicular access across the channel is $1.4 million.
RMS is able to proceed with the inclusion of the diversion in the environmental assessment if the project continues with a northern bypass of Berry. | Completed |
| 7. Can we deviate to the south of the sewerage treatment works in order to create more clearance to the Miller Dairy on Wharf Road? | Initial examination of the specific change to route the alignment south of the sewage treatment plant shows it will lengthen the route by approximately 200 metres which is unlikely to net any cost efficiencies. In addition, preliminary results from geotechnical fieldwork indicate that this deviation involves more construction in areas of deep soft soils than the base case design. The foundation requirements for such construction would be likely to increase the cost of construction significantly. | Completed |
| 8. Earthworks cost estimation
Priority issue | Clarity required regarding the parameters for earthworks redesign and costing.
Current process involves optimisation of cut and fill across both northern and southern routes for earthworks costs to be considered.
Suggested that the imported fill can be brought from the Toolijooa cut and cost of disposal of Toolijooa excess fill ($35 per m3) could be avoided by using on Southern Option embankment. 400,000m3 noted. This would need early placement for setting.
Otherwise costs for exporting soil need to be added into the equation. | The Toolijooa cut is included in the current optimisation process, to utilise excess fill to minimise the cost of the southern suggestion.
See Item 4a.
The volume of material to be won/removed from the Toolijooa cut does not create an excess available for haulage to the south of Berry.
The mass haul analysis indicates that all the material won/removed from the Toolijooa cut is required in the adjacent fills/embankments.
The Northern alignment has balanced earthworks over the entire 11.5 kilometre project length and thus generates no surplus.
There is therefore no cost associated with exporting excavated material from the Northern alignment. | Completed |
| 9. Northern route and southern route tree removal | Both would result in tree removal
Northern: Over 120 mature age (150 yr) eucalypt trees will need to be removed during road construction
Southern: tree removal would be required. | Tree preservation is an important part of the environmental considerations for the project.
This investigation is focused on preparing cost estimates for the two routes. At this stage, the technical investigations have been conducted into project aspects that have the most significant impacts on cost.
This has not involved detailed consideration of environmental factors.
For whichever route is progressed, environmental considerations including tree preservation will be considered in detail as design development proceeds to achieve the best project outcome. | RMS has included estimates for the cost of removal of mature trees for both routes in the cost estimate.
These estimated have assumed that 120 mature trees will be removed for the northern option and 30 mature trees for the southern option. | Completed |
<p>| 9(a) Tree removal and realignment to the north. | Apart from the tree issue, the Arbour Village & the Bupa Village would both gain environmentally the increased distance created by realigning the route from Kangaroo Valley Road/Victoria Street, to the north away from | Design refinements such as this one would be considered as the design is developed. The current concept design for the northern route shows widening on the northern side (i.e. adjacent to the existing northbound lane). | Completed |</p>
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Arbour Village forest and further along the BUPA forest, this can be done by switching the widening to the northern side of the existing highway at these locations.</td>
<td>Information and outcome A southern suggestion horizontal alignment has been designed and boundaries have been set for the southern suggestion. This has allowed RMS to quantify the required property acquisitions.</td>
<td>The estimate for the southern suggestion includes a credit for the resale of properties already purchased for the northern preferred route. The estimate for each route includes all property acquisition costs incurred to date. The property equation includes total costs on both alignments - acquisitions and disposals. The contingency applied to property acquisition costs has been determined in consultation with the independent cost estimating reviewer. The details of the methodology for determining property costs are included in the TIG report. Completed</td>
<td></td>
</tr>
<tr>
<td>10. Property acquisitions Priority issue</td>
<td>Full cost information on required acquisition. Can costs for the southern suggestion be credited with the resale value of properties acquired (or to be acquired) on the northern preferred route - the difference could be $20m?</td>
<td>Information and outcome A southern suggestion horizontal alignment has been designed and boundaries have been set for the southern suggestion. This has allowed RMS to quantify the required property acquisitions.</td>
<td>The estimate for the southern suggestion includes a credit for the resale of properties already purchased for the northern preferred route. The estimate for each route includes all property acquisition costs incurred to date. The property equation includes total costs on both alignments - acquisitions and disposals. The contingency applied to property acquisition costs has been determined in consultation with the independent cost estimating reviewer. The details of the methodology for determining property costs are included in the TIG report. Completed</td>
</tr>
<tr>
<td>11. Access roads and local road adjustments</td>
<td>Design details required for northern and southern bypass route options</td>
<td>Information Access roads and local road adjustments are included in the concept design for the Northern route and will be developed in the design of the southern route. Access provisions will also include stock underpasses.</td>
<td>Drawings of access provisions and local road adjustments have been completed for both bypass routes. Costs have been included in the estimates and stakeholders will be able to examine these access provisions in the report. Completed</td>
</tr>
<tr>
<td>12. Southern suggestion viaduct could be shortened by up to 500m by replacing a middle section with an island embankment (as done on the northern preferred route). Priority issue</td>
<td>A 500m embankment island is suggested, to half the length of the viaduct structure (cost savings could be about $33m). Erosion controls would need to be costed. Can this be done with minimal impact on flooding? Noted that similar occurs with the northern preferred route design with the 200m extension to the viaduct's western abutment. An island embankment could be armoured, if necessary with Reno Mattresses or equivalent, plus a flood relief culvert located at about mid point along the embankment. Understand the flood flow velocities at the northern route are likely to be significant as they occur opposite the confluence of Bundewallah and Conollys Creek and near Broughton Mill Creek. (To be checked).</td>
<td>Information The proposed island embankment has been investigated in detail. This has included performing further modelling on the impacts of the island embankment on flood flow paths, impacting on upstream water levels (need to check distance) and the duration of flooding. The creeks affected are Broughton Mill and Broughton Creek. This further flood modelling has provided information about these impacts and this has been used to develop a feasible design incorporating this embankment. However, this embankment will be treated as a provisional item as the technical investigation group has assessed that a route with an island embankment is not the best engineering solution. The impact of this proposed island embankment is not the same as that of the northern route island embankments. The embankments are in different areas and subject to different flood behaviour. This island structure located in the riparian area of Broughton Creek may not be accepted in an environmental process, unless mitigation measures were employed. In terms of constructability, cost savings from the cheaper embankment may be reduced significantly with this suggestion, by a loss in efficiency in constructing multiple structures (i.e. two separated viaducts and an embankment instead of 1 continuous viaduct). There are two recent examples at Windsor and Kempsey, where the construction teams removed an island design to save time, offset the cost of additional bridge structure and reduce the</td>
<td>An island embankment has been assessed as a provisional item for the southern suggestion. Completed</td>
</tr>
<tr>
<td>Issue</td>
<td>Community view/suggestion put to RMS</td>
<td>Information and actions</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Overall project cost. Preliminary results from the geotechnical fieldwork indicate that this embankment would be located in an area of relatively deep soft soils which would cause problems for settlement and stability. Addressing these problems would further increase the cost of this embankment, as well as increasing the risk profile. Documentation to be prepared for report on - Risks - Impact of discontinuous construction - Precedents of inclusion or exclusion of equivalent embankments in other projects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island embankment</td>
<td>It has been suggested that an island embankment will result in a major cost benefit of approx. $20m to $25m (net). It is believed that the Technical Investigation Group is overstating the impacts of flooding to the island embankment. It is considered that the embankment could be compared to a typical flood levee embankment built running parallel to the flow of a river. The embankment has minimum impact on the Broughton Mill Creek / Broughton Creek Floodplain due to its small percentage cross-sectional profile across the combined floodplain of approximately 3.0%. The Island embankment location is well outside the riparian area, as such the environmental process should not be affected. Also, the existing rail embankment already impacts on the riparian area of Town Creek, Broughton Mill Creek & Broughton Creek. If it is considered that the Northern Option embankment is OK then the same logic must be used for the Southern Route Island Embankment in order to provide a “like for like” cost assessment as the conditions are nearly the same. Costing alternatives should be prepared for both having and not having an Island Embankment. Obviously the cheapest solution either way should be considered.</td>
<td>The Technical Investigation Group has considered the incorporation of an island embankment on the southern suggestion in detail. This assessment and actions are detailed in (12.)</td>
<td>See Item 12. Completed</td>
</tr>
<tr>
<td>Pier design</td>
<td>Information on pier design requested: – can round piers be considered given most efficient hydraulic profile in respect of flood flow?</td>
<td>Yes they can be considered. The Berry bridge and northern interchange working group was given a commitment that RMS would further develop the design for the bridge, including pier design, which needs to be considered as part of an integrated bridge design – abutments, piers, headstocks, recessing etc. Advice from Aurecon (assisting on the bridge design) is that the design for the northern bridge would be broadly suitable for the</td>
<td>Completed</td>
</tr>
</tbody>
</table>

Round piers have been included in the design for the large bridge for the northern alignment and the viaduct on the southern alignment.
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Construction program and cost</td>
<td>High priority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the soil is brought in straight from the Toolijooa excess fill, the construction time for the southern suggestion could be reduced compared to a stand alone project. Can the team assume for the southern suggestion preloading outside the construction contract period (as soon as soil from Toolijooa cut becomes available). This could reduce cost, due to only one operation of loading and unloading, without the need for double handling and a temporary dump/storage site with all its associated environmental costs.</td>
<td>Information There is no excess from the Toolijooa cut. The volume of material to be won/removed from the Toolijooa Cut is required in the adjacent fills/embankments. If this material won/removed from the cut was instead used for preloading the Southern alignment, then material would need to be imported for use in the fills/embankments in the northern section of the project adjacent to the Toolijooa cut. This also means there is no need for double handling and temporary storage. Work has been completed to optimise the earthworks balance to achieve the best cost outcome. Areas considered were: 1. Reduction of embankment fill material by steepening batter slopes 2. Increase of material production by making cutting slopes shallower 3. Examining localised adjustments to the vertical alignment to generate fill</td>
<td>See Item 4a. Completed</td>
</tr>
<tr>
<td>14(a)</td>
<td>Construction program and cost</td>
<td>High priority</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A community member has requested a Budget Estimate from a Picton based Earthmoving Company, who advise the following:- Based on 250,000m³ (guessimate) of select fill (soil or rock), to be loaded at Toolijooa Cut, transported approx. 12.0 kms, to the Southern alignment, unloaded and return trip. The works to be completed within a 6 months duration. They allow 1.0 hour per return trip. They advise a total 14,500 truck movements (av.150/day). Dump Truck + Dog Trailer:- 13 to 15 m³ or 33.00 tonnes/load Cost Estimate:- Loading 250,000m³ at Toolijooa Cut at $1.00/m³ = $250,000 Heavy Haulage 250,000m³ Toolijooa Cut to Southern alignment at $9.00/m³ = $2,250,000 TOTAL = $2,500,000 or $10.00/m³.</td>
<td>Information The Technical Investigation Group has considered this feedback. Item 14 indicates there is no surplus fill. Work has been completed to optimise the earthworks balance to achieve the best cost outcome. Areas considered were: 1. Reduction of embankment fill material by steepening batter slopes 2. Increase of material production by making cutting slopes shallower 3. Examining localised adjustments to the vertical alignment to generate fill</td>
<td>See Item 4a. Completed</td>
</tr>
<tr>
<td>15.</td>
<td>Construction assumptions and the width of the bridge and roadway</td>
<td>For the embankments – 4 traffic lanes with space in centre for 2 more lanes should be costed. For bridges – 4 lanes with piles, pile caps, piers and headstocks designed for a possible future</td>
<td>RMS road design requirements have been applied to the bridge and roadway for both the northern alignment and the southern suggestion. The typical cross section for a straight bridge is included in the project design assumptions: 1m inner shoulder, 2 x 3.5m lanes and 2...</td>
</tr>
<tr>
<td>Issue</td>
<td>Community view/suggestion put to RMS</td>
<td>Information and actions</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Priority issue</td>
<td>expansion to 6 lanes but not now (may not be needed for many years). This should be costed.</td>
<td>- 3m outer shoulder. The shoulder width needs to match the approaches. As most bridge approaches are on an embankment requiring 3m clearance to the concrete safety barrier this width has been carried over to the bridges.</td>
<td></td>
</tr>
<tr>
<td>Priority issue</td>
<td>Feedback from a community member suggests that at this stage 4 lanes only are required, and as such would envisage 2 separated carriageways of 2 lanes each would be built spanning off a common headstock. This feedback suggested that major cost savings could be made to both the Northern & Southern structures if the future 2 lanes were omitted (Super T's + insitu deck) at this stage but allowance made for future widening through the centre median. Such savings would not be limited to the direct construction savings only, but would be reflected in the capital investment saving (including interest, asphalt replacement & maintenance etc.) over the projected life of 100 years or up until such time that the future widening occurs.</td>
<td>Bridges on curves require additional widening to the median shoulder (up to a maximum of 2.5m) to provide stopping sight distance at 100kph of 175m. The design approach for the major bridge on both the northern alignment and the southern suggestion is the extra width would allow for the provision at some point in the future of an additional lane in each direction.</td>
<td>Completed</td>
</tr>
<tr>
<td>15(a) Construction assumptions and the width of the bridge and roadway Priority issue</td>
<td>Feedback from a community member suggests that at this stage 4 lanes only are required, and as such would envisage 2 separated carriageways of 2 lanes each would be built spanning off a common headstock. This feedback suggested that major cost savings could be made to both the Northern & Southern structures if the future 2 lanes were omitted (Super T's + insitu deck) at this stage but allowance made for future widening through the centre median. Such savings would not be limited to the direct construction savings only, but would be reflected in the capital investment saving (including interest, asphalt replacement & maintenance etc.) over the projected life of 100 years or up until such time that the future widening occurs.</td>
<td>The current designs have been developed according to RMS requirements for road design. RMS road design requirements for the project are for two lanes in each direction as well as minimum sight distance adjacent to the median barrier and cyclists. These design requirements have been applied to both route options resulting in the same road and bridge widths for both options. These design requirements may in future allow for the addition of an extra lane by providing an alternate route for cyclists and reducing shoulder widths.</td>
<td>Completed</td>
</tr>
<tr>
<td>Issue</td>
<td>Community view/suggestion put to RMS</td>
<td>Information and actions</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>A community member suggested a number of bridge structure design amendments</td>
<td>By utilising a post tensioned headstock, it may be possible to reduce the number of caissons & piers to 2 rather than 3.</td>
<td>Information With regard to the technical suggestions relating to the bridge structure types and construction methods, design refinements would normally be assessed during the detailed design phase of a major project such as this one. For the purposes of consistency and as noted above, the same bridge type and construction methods has been applied to both bridges. Casting of precast beams on site has been investigated by the TIG due to the large number of precast beam elements on the project, particularly for the Southern Route suggestion. Haunched or “Step-Jointed” Super-Ts were investigated during the review of the Northern Viaduct. This gives the effect that the headstock support beams are buried within the bridge deck depth. Due to the large spans between piers, the benefits of providing an embedded headstock were found to be negligible in regards to the hydraulic performance. Based on discussions with the Urban Design Consultant CM+ and the Berry Bridge Working Group, it was agreed that a bridge deck placed onto the headstock beam was the preferred solution. It was also found that this pier solution is more cost effective when compared with a step-joint arrangement. The Super-T girders will be simply supported between piers, however the deck slab will be continuous between expansion joints. The expansion joints will be 200-300 m apart which would be finalised during the detailed design. Making the Super-Ts continuous over the supports to reduce the structural depth is something that can be looked at during a detailed design stage. It is noted however that on current Pacific Highway Upgrade projects for RMS, making Super-T bridges continuous is prohibited for skews greater than 1 degree or where girders in an adjacent span are not straight. The curved geometry of the Northern and Southern Viaducts would preclude the use of continuous Super-T bridges.</td>
<td>The TIG has included casting of precast beams on site in the estimates. Completed Post-tensioning Super-Ts in lieu of prestressing the girders is not recommended. Setting up a prestressing bed on site as part of the casting yard is a one-off cost and would be far less than the additional post-tensioning activities and quality control that would be required to post-tension the Super-Ts. If a post-tensioned concrete bridge structure was to be adopted at a detailed design stage, a match-cast segmental construction would be most likely, similar to the Bridge RMS built for the Windsor Flood Evacuation Route in Sydney. The TIG believes that the current prestressed Super-T bridge option is one of the most cost competitive bridge types for the Berry Bypass. Completed</td>
</tr>
</tbody>
</table>

16. How are we costing noise/urban design considerations – especially on the southern suggestion? | | | |

17. Urban Design | The Southern Route is not within an urban design area - therefore the same urban design principles as for the Northern Route should not be applied. | | |
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Rail infrastructure requirements</td>
<td>The RailCorp representative states that the rail electrification cannot be incorporated in overhead structures. This statement is incorrect. The cost to the Southern Route could be further reduced if the RMS / RailCorp agreed that the duplication/electrification was not a design requirement for the future.</td>
<td>RMS road design requirements have been applied to both routes. These design requirements are for two lanes in each direction with 3 metre shoulders including provision for sight distance adjacent to the median barrier and cyclists. These design requirements have been applied to both route options resulting in the same road and bridge widths for both options. These design requirements may in future allow for the addition of an extra lane by providing an alternate route for cyclists and reducing shoulder widths.</td>
</tr>
<tr>
<td></td>
<td>Priority issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Provision for future lanes</td>
<td>Further cost reductions can be made to both the Southern & Northern Routes by designing the superstructures of the Viaducts & Bridge Structures as dual 2 lane carriageways with the provision for 2 more future lanes, should they ever be required? The substructures would be designed to accept 6 lanes at this stage.</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>Priority issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Impact on aquifers in the Toolijooa</td>
<td>Information</td>
<td>The impacts on aquifers and the water table if the Toolijooa cutting is further excavated to provide additional fill material have been investigated and the results included in the TIG report.</td>
</tr>
<tr>
<td></td>
<td>ridge excavation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Southern Route proposal, balanced</td>
<td>Information</td>
<td>A written submission with a revised southern bypass route proposal was handed to the technical investigation group (TIG) and the independent reviewer by Mr. Bruce Ramsay on 30 April 2012. An initial reading of the submission was discussed at the TIG meeting held on 2 May 2012. The independent reviewer advised the first exercise the TIG must undertake is an evaluation of whether the submission conforms to the RMS project design parameters and relevant design standards. The results of this technical</td>
</tr>
<tr>
<td></td>
<td>earthworks to Croziers Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 18. Rail infrastructure requirements:
 - Priority issue
 - Completed
- 19. Provision for future lanes:
 - Priority issue
 - Completed
- 20. Impact on aquifers in the Toolijooa:
 - Completed
- 21. Southern Route proposal, balanced earthworks to Croziers Rd:
 - Information
 - Completed
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conformance and design strategy evaluation are listed below in no particular order. Where applicable, commentary is provided (italics) on the impact of the proposed design change to assist subsequent decisions.

1. It was observed that the revised alignment is approximately 180m longer than the current southern option.

2. The curve at the northeast approach (approximate CH15000 to CH16000) appears to be a compound curve. This type of curve is to be avoided as it introduces safety issues relating to driver perception in the change in curvature at speed. Traversing a compound curve changes side friction demand between tyres and the road surface with associated safety issues. This curve could be replaced with a single best fit curve of 750m radius and was used in attempting to digitally model this alignment.

3. It appears that a short curve length (less than 300m) of 1500m radius is proposed between approximate chainages 18700 to 19000. On high speed divided carriageways curve lengths less than 300m are to be avoided relating to driver perception in changing from straight to curve to straight at speed with associated safety issues.

4. The proposed alignment enters the sewage treatment plant facility.

5. The proposed alignment runs along Broughton Mill Creek for approximately 200m. The skew angle of the bridge creek crossing would likely require bridge supports within the creek’s riparian area.

6. The proposed alignment runs along Broughton Creek for approximately 150m. It is likely, the embankment or embankment retaining structure would encroach the creek’s riparian area.

7. The proposed longitudinal vertical profile does not comply with design standards. An exercise to make the longitudinal vertical profile comply would fundamentally change the characteristics of the proposal, i.e. turning it into an inherently different alignment vertically with consequential impacts to the horizontal geometry and earthworks balance. The scale of such an exercise is beyond the scope of this evaluation.

8. There is a 4.3m clearance provided over the railway crossing No.1 (near Tannery Rd). The minimum clearance required at this crossing is 6.5 m in accordance with RailCorp’s requirements for the project. Clearances to railway crossings and local roads should be in accordance with the vertical height clearance requirements.

9. The carriageway width appears to provide for two lanes in each direction in embankments and cuttings. Provision is required for the future upgrade to three
<table>
<thead>
<tr>
<th>Issue</th>
<th>Community view/suggestion put to RMS</th>
<th>Information and actions</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lanes in each direction in line with the design parameters set out for the upgrade of the Princes Highway.</td>
<td>Completed</td>
</tr>
</tbody>
</table>

The submission from Mr. Ramsay was provided to the TIG to assist in the development of the design for the southern bypass route. Based on this review the TIG considers the revised alignment not suitable for further consideration at this time and will continue working on the current design for the southern bypass route. Should the southern bypass route be selected as an option to be further developed in the future, some of the concepts proposed in this revision may be considered in the design development process.